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ABSTRACT

A robot wrist consisting of two universal joints can eliminate the
wrist singularity problem found on many industrial robots. This pa-
per presents forward and inverse position and velocity kinematics for
such a wrist having three degrees of freedom. Denavit-Hartenberg
parameters are derived to find the transforms required for the kine-
matic equations. The Omni-Wrist, * a commercial double universal
joint robot wrist, is studied in detail. There are four levels of kine-
matic parameters identified for this wrist; three forward and three
inverse maps are presented for both position and velocity. These
equations relate the hand coordinate frame to the wrist base frame.
They are sufficient for control of the wrist standing alone.

When the wrist is attached to a manipulator arm; the offset be-
tween the two universal joints complicates the solution of the overall
kinematics problem. All wrist coordinate frame origins are not co-
incident, which prevents decoupling of position and orientation for
manipulator inverse kinematics. This is a topic for future research.

INTRODUCTION

Many current industrial robot wrists suffer from -singularity limita-
tions where at least two wrist coordinate frames align, reducing orien-
tational freedom. Near singular positions, extremely large joint rates
are required to maintain constant cartesian rates. One proposed wrist
design for reducing singularities uses the universal joint to achieve
roll, pitch, and yaw orientation. An overview of robot wrists, includ-
ing universal joint designs, is given by Rosheim (1989). Other refer-
ences present non-singular robot wrist designs, e.g., (Barker, 1986),
(Milenkovic, 1987), (Rosheim, 1987 and 1986), and (Trevelyan, 1986).

McKinney (1988) presents forward kinematic and resolved rate equa-
tions for single and double universal joint robot wrists. The author
studies a specific double universal joint wrist, the Omni-Wrist from
Ross-Hime Designs, Inc. A single universal joint wrist is attractive
because its motion is purely rotational. However, the workspace is
limited due to gimbal lock singularities. Also, the roll velocity of the
output shaft is variable, given a constant input roll rate. Therefore,
a wrist with two universal joints in series is suggested, which allows
an approximately hemispherical singularity-free workspace {McKin-
ney, 1988). Two universal joints yield a constant roll velocity ratio
(Mabie and Reinholts, 1987).

The current paper presents forward and inverse kinematic position
and velocity equations for control of double universal joint robot
wrists. Denavit-Hartenberg parameters are presented for double uni-
versal joint wrists., The Omni-Wrist kinematic transformations are
presented. Four levels of kinematic parameters are identified, from
the actuator angles to the position and orientation of the hand. Three
mappings are presented for each of the forward position, inverse posi-
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tion, forward velocity, and inverse velocity (resolved rate) problems.
These equations relate the robot hand to the robot wrist base and
are sufficient for control of the wrist standing alome.

The double universal joint wrist is not purely rotational due to the
offset between the two universal joints. Position and orientation tra-
jectories thus may not be decoupled for a double universal joint wrist
attached to a manipulator arm. The manipulator inverse position
and velocity problems are more complicated for the double universal
joint robot wrist than a purely rotational robot wrist.

SYMBOLS

{m} Cartesian coordinate frame m

{3} Wrist base coordinate frame

{8} Hand coordinate frame

044,054,04 Actuator angles

04c:, 058G, 06 Gear bail angles

04,05, 06 Universal joint angles

[~ T Homogeneous transformation matrix of {m}
relative to {n}

[»R] Rotation matrix of {m} relative to {n}

rij Element (i,j) of [3R]

{"Pn} Position vector from origin of {n} to {m},
expressed in {n}

"R} Unit direction vector X of {m}
expressed in {n}

{"wm} Angular velocity of {m} with respect to {3},
expressed in {m}

{™vm} Linear velocity of {m} origin with respect
to {3}, expressed in {m}

‘F 1 Forward map solving ;; given 6,4, i=4,5,6

F2 Forward map solving 6; given 8;;, i=4,5,6

F3 Forward map solving [3T] given 4;, i=4,5,6

I1,12,13 Inverses of F3, F2, F1, respectively

FVi,IVi,:=1,2,3 Forward and Inverse velocity maps,
defined analogously

é.- Joint rate i

¢ cosby

8s sino.'

t; tand;

L Offset length between the universal joints

DOUBLE UNIVERSAL JOINT WRIST KINEMATICS

A universal joint is used to transfer rotations between intersecting
shafts. Most kinematics textbooks discuss universal joints (e.g. Ma-
bie and Reinholtz, 1987). A kinematic diagram for the double uni-
versal joint robot wrist is shown in Fig. 1. The input shaft rotates
about a fixed axis and the output shaft is free; thus there are five
degrees of freedom. Coupling of 65 and 6 reduces this number to
three degrees of freedom.




Figure 1 shows the initial position for all wrist coordinate frames;
all universal joint angles are zero in this configuration. Frame {3} is
the wrist base frame, fixed for this paper. Frame {4} rotates by 6,
relative to {3}; {5} rotates by 05 relative to {4}; {6} rotates by 8¢
relative to {5}; {7} rotates by the coupled §; relative to {6}; and the
hand frame {8} rotates by the coupled 85 relative to {7}.

s X7

U-Joint 2
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2, #
U-Joint 1

05 7,
£

% ‘
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Figure 1
Double Universal Joint Robot Wrist
Kinematic Diagram

Denavit-Hartenberg Parameters
The Denavit-Hartenberg parameters for the double universal joint

robot wrist of Fig. 1 are given in Table I, which follows the convention
in Craig (1988).

Table I Denavit-Hartenberg Parameters

i -1 G-1 g 8;
4 0 0 0 f,+90°
5 90° 0 0 6g+90°
6 90° 0 0 N
7 0 L 0 f¢
8 90° 0 0 f5-090°

Forward Position

The forward solution finds [3T]| given 84, 65, 6. Equation 1 is the
homogeneous transformation matrix describing the position and ori-
entation of {t} with respect to {1 — 1} (Craig, 1988).

Eﬂ.‘ —39,' 0 @1

i1 s0;ca—y chica;—y —say—1 —disa—

' T = [} 11 3 4] =1

[ ] sb,sa;—1 cbisai—y  co-y dicai—) M
0 0 0 1
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Five homogeneous transformation matrices relating {3} through {8}
are obtained by substituting the Denavit-Hartenberg parameters into

Eq. 1.

[—84 —c4 0 O —85 —Cp 0 0
3 _ ) €4 —34 0 O 4 _ | O 0 -10
471 = 0 0 10 71 = cs —s85 0 O
) 0 01 0 0 0 1
fcs —s¢ 0 O ce —s8¢ 0 L
5 0 0 -10 s¢ ¢ 0 O
Tl = 6 | 96 6
[T %6 ¢ 0 0 (+T 0 0 10
Lo 0 0 1 0 0 0 1
[ 35 Cs 00
7 _ |0 0 10
sT) = s —85 O 0]
0 0 01

The general forward kinematics solution is Eq. 2. The (4x4) forward
transform is comprised of a (3 x 3) rotation matrix representing the
orientation and a (3 x 1) position vector locating the origin of {8} in
{3}. The specific terms are given in Eq. 3.

{*Ps}
-0 2

0 0 o | 1
BT) = 3T(84)] [§T(65)] (T(86)] (ST (66)} [aT(05)]

|
gr=|___ BM ]

2s5ce K1 — 84 2c5caK1l  —236K1+cq L(K1)

PT] - 2s5ca K2+ ca  2c5c0 K2 ~236 K2 + 84 L(KZ)

s 285C5C(2, 2c§c?, -1 —2056063 LCng
0 0 0 1 (3)

K1 = cq36 + 3435¢c

K2 = 8436 — C435Cq

Inverse Position

The inverse problem solves for the universal joint angles given task
space input. The full [3T] cannot be specified because it has six
freedoms, and the wrist only three. Due to the following constraint,
which dictates that {° Pg} travel on the surface of a sphere of radius L,
{2P;} cannot be the input, because it has two independent freedoms.

P2+ pPE+PI=L? (4)
The rotation matrix [JR] is the input to the inverse problem.
i1 iz "s

3
[,,R] = |rz1 r2z2 Ta3
rair a2 33

BRI = [ZR(8)] §R(95)] [sR(60)] [FR(66)] 3R (Gs)]

(5)

The angle 84 is isolated by inverting [3R] and multiplying it on the
left of both sides of Eq. 5.

BRI BR] = [AR(6:)] [ER(8)] [SR(B) [RR(B)] (B)

The angles 65 and 6g are eliminated from the right hand side of Eq.
6 by equating the (1,1), (2,3), and (3,2) elements, given in Eqs. 7, 8,
and 9, respectively.



r2164 — r1184 = —2s3cg + 1 (7)
—riscq — ra3se = —2c2 +1 (8)
r3pg = 2C§cg -1 (9)

Equation 7 is subtracted from Eq. 9 to eliminate 05.

T3z — r21C4 + 1184 = 2¢3 ~ 2 (10)

Equations 8 and 10 are added to remove fg.

Ecosby + Fsinfg +G =0

= —(ri3 +ra1) (11)
F= ry1—ry
G = rsa+1

Using the tan half angle substitution (Mabie and Reinholtz, 1987),
there are two solutions for 6,:

-FrvEET R =GB

04, ., = 2tan G-F

(12)

The radicand in Eq. 12 is simplified with orthonormal constraints.
The columns of [ R] are the X, Y, Z unit vectors of {8} expressed in
{3} coordinates, while the rows are those of {3} given in {8}. The
orthogonal constrainte dictate that both the columns and rows of
a rotation matrix form a dextral mutually perpendicular set. The
normal constraints dictate that the length of all columns and rows is
unity. With the following four constraints, E? + F2 — G2 = 0.

30 =32 x 2 Xs
|8X3| =10
%] = 1.0
K

3l = 1.0

(13)

Therefore, given 3R], there is one solution to 6, (two repeated roots),
from Eq. 12.
—F
= ) 14
64 = 2tan [G—E‘] (14)

With 64 solved, the left hand side of Eq. 6 is known. The next step
is to isolate and solve 6.

[5R(8s)™" [3R(64) "] 3R] [GR(8s) "] = [3R(96)) [SR(6)]  (15)

The (2,2) elements of Eq. 15 are equated to solve 6.

(16)

f: = tan—1 ['1384 - 72304]
5 = E—

733

Both solutions from the inverse tangent function are mathematically

valid, due to symmetry: 5 (FF <05 < 5F) and 65 + 7. When 6,.
-and @5 are known the left hand side of Eq. 15 is known. Angle g is

solved by equating the (3,2) elements of Eq. 15.

2013 = (:08_l (r13¢:4 + 7'2384) (17)

The inverse cosine function solution is +26. This ambiguity is re-
solved by determining which sign satisfies the (1,2) terms of Eq. 15.

8295 = (r23c4 - r1334)35 — raacCs (18)
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The proper sign for 26 is chosen from Eq. 18. Another valid solution
for 205 is 206 + 21; therefore, a second mathematical solution for 6g
is g + «.

A generalization is drawn regarding the two solutions for fs. The
right hand side of Eq. 18 for 65 + 7 is the negative of that value for
f5. Therefore, the value of 85 corresponding to g +  is the negative
of g corresponding to 6.

There are four solutions to the inverse problem: a unique 44, two
05 for this 8,4, plus two g for each 65, Only one combination need
be solved; the remaining three are formed from the structure of the
solution, summarized in Table II. In rows 1 and 2 of Table II, 8¢ can
be positive or negative; the negative fg in rows 3 and 4 indicates
opposite sign to fg of row 1 .

Table II Inverse Position Solutions

Solution 4, s fs
1 [ Os s
2 04 05 06 +
3 Oy s+ -fs
4 s Os+7m -bg+n

Forward Velocity

The forward velocity problem solves for cartesian rates given joint
rates using velocity recursion equations {Craig, 1988).

{Hwisr} = [PRICwi} + 6ia 1 21} (19)
{"tois} = [(FR) (Coi} + Cod x {Pit)) (20)

The wrist Jacobian matrix is extracted from the forward velocity
solution. The (6 x 3) Jacobian matrix maps the (3 x 1) joint rates
into the (6 x 1} cartesian rates. The Jacobian matrix is partitioned

into (3 x 3) rotational and translational Jacobian matrices, [Jg] and
(7).

{Pws} = [Jr| {6}

8205 cg 35320 2cg
[Jr) = ]| 2c8Bc2 — 1 c5s206 —2s5
—c5320g  2c2 0 (21)
[ b
{8} =1 6s
bs
{®vs} = [Jr] {6}
3g —C5C¢ 353¢ (22)
[Jr]=L| o 36C6  C53¢
35C6 0 cg

Inverse Velocity (Resolved Rate)

The resolved rate problem solves for joint rates given cartesian rates.
This problem is overconstrained (six equations in three unknowns).
Therefore, only three cartesian rates may be specified. The resolved
rate input cannot be {®vs} because |Jr| is always singular. This is
due to the constraint, Eq. 4.

|Jr| = Lsgsscd(1—cZ —s2) =0 (23)



The inverse velocity problem is solved by inverting Eq. 21.

{6} = [Jz "] {Pws}

t 1 —te
-1 y ™, (24)
[JR ] = 3stg cstg 1 — ZcT
c5 — 2i_s —35 %tste

The wrist singularity conditions are found by setting the determinant
to zero.

|Jr| = 4csc2 =0 (25)
The double universal joint robot wrist is singular when f5 = +5 or

00 = :f:%

OMNI-WRIST KINEMATICS

The Omni-Wrist by Ross-Hime Designs, Inc. is a double universal
joint robot wrist. Figure 2 displays a section view of the Omni- Wrist.
Planetary gears transfer the first universal joint rotations 65 and 8¢
to the second universal joint.

The rotational axes for 85 and 6 are moving. The Omni-Wrist has
outer and inner bevel gear bails to transfer rotations from two actu-
ators fixed in the wrist base to the angles 65 and g, to avoid moving
actuators. No intermediate gear bail is required for 64 because it
rotates about an axis fixed in the wrist base. In addition to the outer
and inner gear bails, helical gear trains are used to reduce the speed
and amplify the torque for each of the three actuators.

Referring to Fig. 2, actuator 1 drives 64. The inner gear bail rotates
in the plane of the paper; the outer rotates about a perpendicular
axis. The inner gear bail angle, rotated by actuator 2, equals fg
when 6, = 6; = 0. Actuator 3 rotates the outer gear bail, whose
angle equals 65 when 6, = 6 = 0. In general, the inner and outer
gear bails combine to yield 65 and 6.

Gear Coupling for fg ]

Ys

— Outer Gear Drive

bo= 0
= O
8 = —45°

Tiqure 2
Omni-Wrist Section View
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The roll angle 6, is continuous and bidirectional. The inner and outer
gear bail angles are limited to £45°. These limits apply to 65 when
64 = 0g = 0, and to g when 04 = 65 = 0. When these angles are not
zero, the limits on 65 and g are more restrictive.

There are four levels of Omni-Wrist kinematic parameters: 1) Ac-
tuator angles (f44,054,064); 2) Gear bail angles (84, 05G,06G); 3)
Universal joint angles (84, 65,85); and 4) Hand coordinate frame (7.
All angles are gero in the initial position.

Omni-Wrist Position Kinematics

Figure 3 describes the three forward and inverse position mappings
between the four levels of Omni-Wrist kinematic parameters. The
overall forward position problem finds [37'] given the actuator angles,
using maps F1, F2, and F3. The inverse position problem finds the
actuator angles given |3 R] via the maps I1,I2, and I3.

{®Ps}
F3 F3 n
84, 05, 00
F2 I

4G, 5y 06

I3

F1
| 4

044,054,064

Figure 3
Position Mappings

Maps F3 and I1 are the general wrist solutions, Eq. 3 and Eqs. 14,
16, and 17, respectively. The remaining maps are developed in this
section.

Position Maps F1 and I3

The gear bail angles are related to the actuator angles by gear trains.
Forward map F'1 is given in Eq. 26.

04c; = N1b4a (26a)
f5c: = Nabsa (26b)
0o; = Naboa (26¢)
For the Omni-Wrist, N\ = 752z, N2 = T and Ny = s3v5. The

map I3 is the inverse of Eqs. 26.

Position Maps F2 and 72

The kinematic relationships between the gear bail angles and the
universal joint angles are coupled and transcendental. McKinney
(1988) solved a problem equivalent to I2; the map F2 was not solved.




Two coordinate frames are introduced to determine the kinematic
relationships between the gear bail and universal joint angles. The
{IGD} frame is attached to the inner gear bail, and {OGD} is at-
tached to the outer gear bail, as shown in Fig. 4. Both origins are
colocated with the origin of {3}. In the initial position, {3}, {IGD},
and {OGD} are coincident. The inner gear bail rotates by angle fgg
about the fixed axis $7¢p; the outer gear bail rotates about the fixed
oGp by 5.

2,
Xs(initial)

Inner Gear Drive

foc

fsc:
8¢ Vs, V1ep

Yoep(initial)

x3| X()G‘D

Xicp(initial) Outer Gear Drive

Figure 4
Definition of {IGD} and {OGD}

'Fr.om Fig. 1, the offset vector from the first to the second universal
joint is a length L along X (denoted {3Ps}). The moving axes X;cp
and Yo p are perpendicular to {sPa} for any wrist motion.

Xs - XIGD X YOGD

27
XIGD X 90GD )
The terms for Eq. 27 follow, expressed in {3}.
3 _3 IGD foc
Xiap = [fepR] Riep = 0 (27a)
—3%8G
3¢ _m3 OGD 0
Yoep = 3o Rl Yoep = { csa (270)
385G
K1
3X6 = [gR] GXQ = K2 (275)

CsCq

Substituting these terms yields three scalar equations relating the
gear bails and universal joint angles.

C5G36G
A = 4% + 3485¢6 = K1 (28a)
—35GC6q;
T = 4% — CassCo = K2 (28b)
€5GC6G _
*M = cgcg (28¢)
M = \/cos?bsc + sin?fggcos?bge (28d)

Equations 28a - 28¢ are used to find the mappings F'2 and I2.
The angle 64 does not have a gear bail; the F'2 mapping is identity.

04 = bac (29)
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Using Eq. 29 in Eqs. 28a, b, and ¢, the following equations result.

s
A= —;—;fq—;c— = 8¢ + t4cS5¢6 (300.)
—35GC6G
B = 07 = t —
Mea 4G36 — 95C6 (306)
C= ?;IG_CGG = C5Cq (306)

The sinfs term is eliminated from Eqgs. 30a and b to solve for 8.

(31)

b = sin~'(u) u= [i‘i’_B_t_‘S]

1+¢3,

The inverse sine function yields § and = — fg; the latter is out of the
motion range of the Omni-Wrist. With 6¢ known, the solution for fg
comes from Eq. 30c.

v= [9] (32)

65 = cos™*(v) p
s

The inverse cosine function solution is +65. Since both results are
potentially in the motion range of the Omni-Wrist, this ambiguity
must be resolved by choosing the 65 sign which satisfies Eq. 30b.
Map F2 is unique.

The mapping I2 solves for the gear bail angles given the universal
joint angles. The 6,5 mapping is Eq. 29. The remaining gear bail
angles are found by dividing Eqs. 28 and 28a by Eq. 28c.

Iy = tan—"(w) w= [M] (330)
CsCq
-1 c43¢ + 8485¢C¢
foc =tan™ "(q) qg= ——_5606 (33b)

Both results from the inverse tangent function are mathematically
correct, due to symmetry. However, considering angular limits of the
Omni-Wrist, only quadrant I or IV results are admissible. Therefore,
the inverse map I2 is unique.

Omni-Wrist Velocity Kinematics

Figure 5 shows the three forward and inverse maps relating the four
levels of Omni- Wrist velocity parameters. The forward velocity prob-
lem finds the cartesian rates given the actuator joint rates, using
maps FV1,FV2, and FV3. The inverse velocity problem accepts
{8ws} and calculates the actuator joint rates via maps IV1,1V2,
and IV3.

The velocity maps FV3 and IV1 are Eqs. 21 and 22, and Eq. 24,
respectively. The remaining Omni-Wrist velocity solutions are pre-
sented below.

Velocity Maps FV1 and IV3

The map FV1 is a time derivative of Eqs. 26; IV 3 is the inverse of
Eqs. 34.

éqg = Nla'M (346)
fsc = Nabga (34b)
960 = NgggA (340)



(®vs} {Pws}
} ¥ |
FV3 FV3 w1
‘ | t
64,05, 66
¥ |
FV2 ve
] )
0‘(“ ér’(;, éeG
¥ |
FVi V3
| )

0.4,1, ébA)éOA

Figure 5
Velocity Mappings

Velocity Maps FV2 and IV2

The map FV2 is a time devivative of F2, Eqs. 29, 31, and 32. The
angular rate fg is required for the 6z calculation.

é4 = é|(_; (35)
b = 1 du
¢ V1-yldt
d . . .
"‘tf = (Bc204; — As204:)04G + 3 A + cagsacB
. . . . csGl6a .-
A=Q [tu‘:Cnr:aocﬂu: — 8sg30Gsa + csacocfoc — %M]
) . . . %5GCea o
B=Q [—tmssccoaocc ~ ¢sgceclsc + ssGsacbec + —BQATGEM]
_ 1
h Mey
y —385;3G¢3 ; 3
M= e [65086095(3 + 85060(;900]
V1-s5:%5a
(38)
g — -1 dv
ST Ao dt
oA [Ctoeq + C] (37)
dt Cg
A . . C5GC6G §
C= o [%(:Conos(: + csarsecboc + j'gMu—GM]
The inverse map IV 2 is a time derivative of /2, Eqs. 33a and 33b.

The mapping for fac; is Eq. 35.

s = — 5 2

T T v w? dt

B Y ate + sats)fe + S (ca + sasstolis — —s (34)6 )
—_—— 348 - —-—

at P als 435)04 cg Cq + 3435t6)05 csca 84) [}

s = —- %

T T g de

dq 1 . 1 . 1 R (39)
9T 'cb'(l‘aar) = agtg)fy + é(u + cqspte)fs + P (c4)fs
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The derivatives Eqs. 36, 38, and 39 hold for the angle range 3* to
%- The sign of 65 in Eq. 37 is positive when —7 < f5 < 0.

EXAMPLES

This section presents two examples to demonstrate the equations de-
rived in this paper. The first example deals with the forward and
inverse position and velocity problems for the general double uni-
versal joint robot wrist mechanism. The second presents forward
and inverse position and velocity results for the Omni-Wrist. The

dimensions used in this section are mm, degrees, ™, and L‘:‘i

Example 1
Forward Position

Given 64 = 120.0°,65 =
calculated using Eq. 3.

—25.0°,06 = 10.0°, and L = 41, 3T} is

~0.494 -0.798 —0.345 —18.3

s _ | —0.452 —0.103 0.886 2.4 o

[a7] = —0.743 0.593 -0.310 36.6 (40)
0 0 0 1

Inverse Position
Given [3R) from Eq. 40 three universal joint angles are calculated

with Eqs. 14, 16, and 17; the four solutions are formed from Table
1L

Table III Inverse Position Solutions

Solution A fg fa
1 120.0 -25.0 10.0
2 120.0 -25.0 190.0
3 120.0 155.0 -10.0
4 120.0 155.0 170.0

Forward Velocity

Given 64 = 1.0,65 = 2.0,05 = 3.0, and L = 41, {®ws} and {3vs} are
calculated using Eqs. 21 and 22.

4.4 —80.0
{Bws} = ¢ 3.7 {vs} = {—10.0} (41)
3.6 100.0

Inverse Velocity (Resolved Rate)

Given {3ws} from Eq. 41, 6, = 10,5 = 2.0, f¢ = 3.0, are calculated
using Eq. 24.

Example 2
Forward Position

Given the actuator angles, the gear bail angles, universal joint angles,
and {37} are calculated successively, using maps F1, F2, and F3.
Example 1 presents the F'3 result.



ey oy o

= =

-21060.0 120.0 120.0
959.0 3.7 -25.0 (42)

5852.0 -26.6 10.0

Inverse Position

Given [3R| from Eq. 40, the universal joint, gear bail, and actua-
tor angles are calculated using /1,12, and I3. Example 1 present‘s
I1. Considering angular limits, only the first solution in Table III is
reachable. The inverse maps /2 and I3 are the reverse of maps F2
and F1 in Eq. 42, respectively.

Forward Velocity

Given the actuator rates, the gear bail, universal joint, and carte-
sian rates are calculated with the mappings FV1, FV2, and FV3.
Example 1 gives FV 3.

. FVi . FV2 :
{64} icy = 18
—176.5 1.0 1.0
—-907.2 -3.5 2.0 (43)
—88.0 0.4 3.0

Inverse Velocity (Resolved Rate)

Given {®wsg} from Eq. 41, the universal joint, gear bail, and actuator
rates are found, using IV'1,IV2, and IV3. Example 1 presents IV 1.
The mappings IV 2 and IV 3 are the reverse of FV2 and FV1 in Eq.
43, respectively.

CONCLUSION

This paper presents kinematic equations for control of a double uni-
versal joint robot wrist. The forward and inverse position and veloc-
ity problems were solved. The Omni- Wrist equations were developed
in detail. This wrist has four levels of kinematic parameters. Three
forward and inverse position and velocity maps relating these param-
eters were presented. These equations relate the hand coordinate
frame to the wrist base coordinate frame, and are sufficient for con-
trolling the wrist standing alone. All pertinent kinematic equations
were derived; any specific control algorithm will not require all of the
equations. All Omni-Wrist solutions are unique. The Omni-Wrist is
completely singularity-free throughout its range of motion.

The equations of this paper have been verified by computer simula-
tion. As demonstrated by the examples, the inverse solutions validate
the forward solutions. Experimental work using the Omni-Wrist is
planned to further validate the equations.

The offset, L, between the two universal joints complicates the inverse
kinematics problems when the double universal joint robot wrist is
attached to a manipulator arm. The wrist coordinate frames are not
all colocated, which prevents decoupling of the hand coordinate frame
position and orientation. For a three degree of freedom manipulator
arm carrying the double universal robot wrist, the inverse position
problem involves six transcendental equations, coupled in the six un-
knowns. The associated Jacobian matrix is fully populated, which
means the hand linear velocity depends on the wrist rates in addition
to the first three joint rates. The kinematics of a manipulator using
the double universal joint robot wrist is a subject for future research.
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